Sabtu, 24 Februari 2018

Pembentukan dan Reaktivitas Senyawa Organometalik


SENYAWA ORGANOMETALIC (ORGANOLOGAM)


Kimia organologam adalah ilmu kimia yang mempelajari tentang logam yang berikatan langsung dengan satu atau lebih atom carbon. Beberapa senyawa organologam  ada yang tidak berikatan lansung dengan atom karbon seperti pada kompleks phospine, logam hidrida, organosilikon, organoboron dan lainnya. Ada beberapa logam yang berikatan langsung dengan unsur karbonnya namun bukan termasuk senyawa organologam, yaitu logam karbida dan logam sianida. Fungsi utama senyawa organologam adalah sebagai katalis pada reaksi kimia.
Terdapat dua macam ikatan organologam, yaitu :

·         Ikatan ionik. Ikatan ionik organologam terbentuk dari unsur yang sangat elektropositif yaitu unsur pada golongan I, II, dan III. Organologam dengan yang berikatan secara ionik bersifat tak larut dalam pelarut hidrokarbon dan mudah teroksidasi.
·         Ikatan kovalen. Ikatan kovalen organologam  yang mudah menguap terbentuk dari logam Zn, Cd, Hg, dan logam non-transisi gologan III (kecuali aluminium), IV, dan V. Ikatan kovalen ini terbentuk dengan cara memberikan satu elektron tunggalnya, baik dari logam maupun unsur organiknya, untuk dipakai secara bersama. Sifat dari senyawa organologam dengan ikatan kovalen ini mudah menguap, larut dalam pelarut organik, dan tidak larut dalam air.
Sifat senyawa organologam yang umum ialah atom karbon yang lebih elektronegatif daripada kebanyakan logamnya. Senyawa komplek logam (biasanya logam-logam transisi) merupakan senyawa yang memiliki satu atau lebih ikatan logam-karbon. Senyawa organologam terdiri dari atom pusat dan ligan.

Terdapat beberapa kecenderungan jenis-jenis ikatan yang terbentuk pada senyawaan organologam:

a.     Senyawaan ionik dari logam elektropositif
Garam logam ion-ion karbon yang kestabilannya diperkuat oleh delokalisasi elektron lebih stabil walaupun masih relatif reaktif. Adapun contoh gugus organik dalam garam-garaman tersebut seperti

(C6H5)C-Na+ dan (C5H5)2Ca2+

b.     Senyawaan yang memiliki ikatan -σ (sigma)
Senyawaan organologam  dimana sisa organiknya terikat pada suatu atom logam dengan suatu ikatan yang digolongkan sebagai ikatan kovalen (walaupun masih ada karakter-karakter ionik dari senyawaan ini) yang dibentuk oleh kebanyakan logam dengan keelektropositifan yang relatif lebih rendah dari golongan pertama di atas.

Pada dasarnya Organologam prinsipnya yaitu atom-atom Karbon dari gugus organik terikat kepada atom logam. Konsep ini yang mendasari Organologam, sehingga banyak cara untuk menghasilkan ikatan-ikatan logam pada Carbon yang berguna bagi kedua logam transisi dan non-transisi. Beberapa yang lebih penting adalah sebagai berikut:

1.     Reaksi Logam langsung ; sintesis yang paling awal oleh ahli kimia Inggris, Frankland dalam tahun 1845 adalah interaksi antara Zn dan suatu alkil Halida. Adapun yang lebih berguna adalah penemuan ahli kimia Perancis, Grignard yang dikenal sebagai pereaksi Grignard. Contohnya interaksi Magnesium dan alkil atau aril Halida dalam eter:
Mg + CH3I → CH3MgI
Interaksi langsung alkil atau aril Halida juga terjadi dengan Li, Na, K, Ca, Zn dan Cd.

2.      Penggunaan zat pengalkilasi. Senyawa ini dimanfaatkan untuk membuat senyawa organologam lainnya. Kebanyakan Halida nonlogam dan logam atau turunan Halida dapat dialkilasi dalam eter atau pelarut hidrokarbon, misalnya :
PCl3 + 3C6H5MgCl  → P(C6H5)3 + 3MgCl2
VOCl3  +  3(CH3)3SiCH2MgCl → VO(CH2SiMe3)3 +  3MgCl2

3.       Interaksi Hidrida Logam atau nonlogam dengan alkena atau alkuna.

4.    Reaksi Oksidatif adisi. Reaksi yang dikenal sebagai reaksi Oksa dimana Alkil atau Aril Halida ditambahkan pada senyawa logam transisi Koordinasi tidak jenuh menghasilkan ikatan logam Karbon. Contohnya:
RhCl(PPh3)3 + CH3I → RhCl (CH3) (PPh3)2  +  PPh3

5.    Reaksi Insersi yaitu reaksi yang menghasilkan ikatan-ikatan dengan Karbon, sebagai contoh:
SbCl5 +  2HCCH → Cl3Sb (CH=CHCl)2

Reaksi Grignard ditemukan oleh kimiawan Perancis Auguste Victor Grignard (1871-1935) di tahun 1901. Tahap awal reaksi adalah reaksi pembentukan metil magnesium iodida, reagen Grignard, dari reaksi antara alkil halida (metil iodida dalam contoh di bawah ini) dan magnesium dalam dietil eter kering.
CH3I + Mg → CH3MgI

Anda pasti melihat bahwa magnisium terikat langsung dengan karbon. Senyawa semacam ini yang sering disebut sebagai reagen Grignard dengan ikatan C-logam dimasukkan dalam golongan senyawa organologam. Ikatan C-logam sangat labil dan mudah menghasilkan karbanion seperti CH3- setelah putusnya ikatan logam-karbon. Ion karbanion cenderung menyerang atom karbon bermuatan positif. Telah dikenal luas bahwa atom karbon gugus aldehida atau gugus keton bermuatan positif. karena berikatan dengan atom oksigen yang elektronegatif. Atom karbon ini akan diserang oleh karbanion menghasilkan adduct yang akan menghasilkan alkohol sekunder dari aldehida atau alkohol tersier dari keton setelah hidrolisis.

C6H5CHO  + CH3MgI →  C6H5CH (CH3) OMgI

Reaksi Grignard adalah contoh reaksi senyawa organologam. Karena berbagai jenis aldehida dan keton mudah didapat, berbagai senyawa organik dapat disintesis dengan bantuan reaksi Grignard.
Tabel 2.1 Senyawa komplek organologam dengan perbedaan ligan, geometri, dan reaksi yang dapat dikatalisisnya 
Pada kompleks logam ada tiga jenis keadaan tereksitasi yaitu:
a.     Logam-centered (MC), eksitasi elektron dari T2g ke orbital Eg,
b.     Ligan-centered (LC) yang menyatakan transisi dari p-p*,
c.      Transfer elektron dari logam ke ligan (MLCT).

JENIS - JENIS SENYAWA ORGANOLOGAM


A.   Senyawa Organotimah

      Senyawa organotimah adalah senyawa organometalik yang disusun oleh satu atau lebih ikatan antara atom timah dengan atom karbon (Sn-C). Senyawa ini umumnya adalah senyawa antropogenik, kecuali metiltin yang mungkin dihasilkan melalui biometilasi di lingkungan. Atom Sn dalam senyawa organotimah umumnya berada dalam tingkat oksidasi +4. Rumus struktur senyawa organotimah adalah RnSnX4-n (n=1-4), dengan R adalah gugus alkil atau aril (seperti: metil, butil, fenil, oktil), sedangkan X adalah spesies anionik (seperti: klorida, oksida, hidroksida, merkaptoester, karboksilat, dan sulfida). Bertambahnya bilangan koordinasi bagi timah dimungkinkan terjadi, karena atomnya memiliki orbital d (Sudaryanto, 2001). Tetraorganotimah dan triorganotimah klorida umumnya digunakan sebagai intermediet pada preparasi senyawaan organotimah lainnya. Tetrafeniltimah larut dalam pelarut organik dan tidak larut dalam air. Senyawaan organotimah cenderung memiliki karakter satu atau lebih ikatan kovalen antara timah dan karbon.
      Dari sisi fisika dan kimia, senyawa organotimah merupakan monomer yang dapat membentuk makromolekul stabil, padat (metiltimah, feniltimah, dan dimetiltimah) dan cairan (butiltimah) yang sangat mudah menguap, menyublim, dan tidak berwarna serta stabil terhadap hidrolisis dan oksidasi. Atom halogen, khususnya klor yang dimiliki oleh senyawa organotimah mudah lepas dan berikatan dengan senyawa-senyawa yang mengandung atom dari golongan IA atau golongan IIA sistem periodik atau ion logam positif lainnya. Meskipun kekuatan ikatannya bervariasi, akan tetapi atas dasar sifat itulah senyawa-senyawa turunan organotimah dapat disintesis (Grenwood and Earshaw, 1990). Beberapa metode untuk sintesis senyawaan organotimah telah banyak dikenal. Starting material (material awal) seperti SnCl4 dan triorganotimah halida lazim digunakan sebagai starting material untuk mensintesis berbagai senyawaan organotimah. Beberapa metode yang umum digunakan diantaranya:
  • Metode Grignard, metode ini merupakan metode pertama yang dilakukan di USA dan Eropa Barat dalam memproduksi senyawaan organotimah. Metode ini memerlukan kondisi reaksi yang inert, jauh dari nyala api secara langsung, dan bersifat in situ.

  • Metode Wurst, persamaan reaksinya dituliskan sebagai berikut:
  • Metode dengan menggunakan reagen alkil aluminium, metode ini mulai dikenal pada awal tahun 1960-an. Adapun persamaan reaksinya dituliskan sebagai berikut:
1.  Senyawa organotimah halida


Senyawa Organotimah halida dengan rumus umum RnSnX4-n (n = 1-3; X = Cl,
Br, I) pada umumnya merupakan padatan kristalin dan sangat reaktif. Organotimah halida ini dapat disintesis secara langsung melalui logam timah, Sn(II) atau Sn(IV) dengan alkil halida yang reaktif. Metode ini secara luas digunakan untuk pembuatan dialkiltimah dihalida. Sintesis langsung ini ditinjau ulang oleh Murphy dan Poller melalui persamaan reaksi: 
Metode lain yang sering digunakan untuk pembuatan organotimah halida adalah reaksi disproporsionasi tetraalkiltimah dangan timah(IV) klorida. Caranya dengan mengubah perbandingan material awal, seperti pada persamaan reaksi berikut:

Ketiga persamaan reaksi di atas merupakan reaksi redistribusi Kocheshkov. Reaksinya berlangsung dalam atmosfer bebas uap air. Yield yang diperoleh dengan metode di atas cukup tinggi. Senyawa organotimah klorida digunakan sebagai kloridanya dengan memakai logam halida lain yang sesuai seperti ditunjukkan pada persamaan reaksi berikut:
2.  Senyawa organotimah hidroksida dan oksida


          Produk kompleks yang diperoleh melalui hidrolisis dari trialkiltimah halida dan senyawa yang berikatan R3SnX merupakan rute utama pada trialkiltimah oksida dan trialkiltimah hidroksida. Prinsip tahapan intermediet ditunjukkan pada reaksi berikut ini:

3.  Senyawa organotimah karboksilat

            Senyawa organotimah karboksilat pada umumnya dapat disintesis melalui dua cara yaitu dari organotimah oksida atau organotimah hidroksidanya dengan asam karboksilat, dan dari organotimah halidanya dengan garam karboksilat. Metode yang biasa digunakan untuk sintesis organotimah karboksilat adalah dengan menggunakan organotimah halida sebagai material awal. Organotimah halida direaksikan dengan garam karboksilat dalam pelarut yang sesuai, biasanya aseton atau karbon tetraklorida. Reaksinya adalah sebagai berikut:
Reaksi esterifikasi dari asam karboksilat dengan organotimah oksida atau hidroksida dilakukan melalui dehidrasi azeotropik dari reaktan dalam toluena, seperti ditunjukkan pada reaksi berikut:
4.  Aplikasi Senyawa Organotimah

            Senyawa organotimah memiliki aplikasi yang luas dalam kehidupan sehari-hari. Aplikasi senyawa organotimah dalam industri antara lain sebagai senyawa stabilizer polivinilklorida, pestisida nonsistematik, katalis antioksidan, antifouling agents dalam cat, stabilizer pada plastik dan karet sintetik, stabilizer untuk parfum dan berbagai macam peralatan yang berhubungan dengan medis dan gigi. Untuk penggunaan tersebut, kurang lebih 25.000 ton timah dipergunakan per tahun(Pellerito and Nagy, 2002). 
Senyawa organotimah yang umum digunakan sebagai katalis dalam sintesis kimia yaitu katalis mono- dan diorganotimah. Senyawa organotimah merupakan katalis yang bersifat homogen yang baik untuk pembuatan polisilikon, poliuretan, dan untuk sintesis poliester (Van der Weij, 1981).
Dalam beberapa penelitian, telah didapat dan diisolasi senyawa organotimah(IV) karboksilat yang menunjukkan sifat sebagai antimikroorganisme sehingga dapat berfungsi sebagai antifungi dan antimikroba (Bonire et al., 1998). Diketahui kompleks di- dan triorganotimah halida dengan berbagai ligan yang mengandung nitrogen, oksigen, dan sulfur memiliki aktivitas biologi dan farmakologi, serta digunakan sebagai fungisida dalam pertanian, bakterisida, dan agen antitumor (Jain et al., 2002).

B.   Logam Transisi

1.  Alkil dan Aril Litium (Organolitium)
Senyawa Organolitium adalah senyawa Logam Alkali yang mempunyai sifat kelarutan dalam Hidrokarbon atau cairan nonpolar dan penguapan yang tinggi serta mempunyai sifat khas zat Kovalen. Penggabungan Molekular adalah suatu keistimewaan yang penting dari alkil baik dalam kristal maupun larutan. Jadi dalam Metil lithium atom-atom Li terletak pada sudut-sudut sebuah tetrahedron dengan gugus alkil berpusat pada bidang dihadapannya. Gugus CH3 secara simetris terikat pada tiga atom Li, dan ikatan jembatan alkil ini adalah dari jenis tuna elektron berpusat banyak.
Dalam larutan, sifat spesies terpolimerisasi bergantung pada pelarut, sifat sterik dari radikal organik dan suhu. Dalam Hidrokarbon MeLi, EtLi, n-PrLI, dan beberapa lainnya adalah heksamer, namun tert-butilitihium, yang tersolfasi. Tidak terdapat agregat yang lebih kecil dari pada tetramet. Meskipun demikian, bilamana digunakan pengkelatan amin ditersier, seperti tetrametiletilendiamen (TMED), Me2NCH2CH2NMe2 diperoleh kompleks alkillithium monomer yang stabil. Alkil dan aril juga membentuk kompleks dengan alkil logam lain seperti kompleks dengan Mg dan Zn. Sebagai contoh:
2.  Senyawa Organo-Natrium dan Kalium
Semua senyawa ini benar-benar ionik dan tidak larut sampai batas apa pun dalam hidrokarbon karena sangat reaktif, peka terhadap udara, dan terhidrolisis kuat dalam air. Yang terpenting adalah senyawa natrium dari hidrokarbon asam seperti siklopentadiena, idena, asitilena, dan sejenisnya. Ini diperoleh dari interaksi dengan logam natrium atau natrium yang dihamburkan dalam tetrahidrofuran atau dimetilformamida.
3.  Magnesium
            Senyawa organik dari Ca,Sr, dan Ba sangat ionik dan relatif tidak berguna, namun senyawa magnesium mungkin adalah yang dipakai paling lias sebagai senyawa organik yang digunakan sangat luas dalam kimia organik dan dalam sintesis senyawa alkil dan aril dari unsur-unsur lain. Senyawa ini adalah jenis RMgX (pereaksi Grignard) dan MgR2. Yang pertama dibuat dengan interaksi langsung logam dengan suatu halida organik RX dalam suatu pelarut yang cocok, biasanya suatu eter seperti dietil eter atau tetrahidrofuran. Reaksinya biasanya paling cepat dalam iodida, RI, dan iod dapat digunakan sebagai suatu pengionisasi. Pereaksi RMgX digunakan in situ. Spesies MgR2 paling baik dibuat dengan reaksi kering.



Permasalahan :
1.      Jelaskan secara terperinci prinsip organologam itu sendiri?
2.      Mengapa Organologam dengan yang berikatan secara ionik bersifat tak larut dalam pelarut hidrokarbon dan mudah teroksidasi.?
3.      Sebutkan jenis-jenis senyawa organologam beserta penjelasan singkat yang jelas!
4.   ada dua macam ikatan organologam yaitu ikatan kovalen dan ionik, jelaskan maksudnya!

















Jumat, 16 Februari 2018

Mekanisme Reaksi Adisi Elektrofilik

Elektrofil

Elektrofil merupakan sesuatu yang tertarik pada elektron, Dan karena tertarik oleh daerah negatif, elektrofil harus merupakan sesuatu yang memebawa muatan positif penuh atau memiliki sedikit muatan positif disuatu daerah padanya.
Etena dan alkena yang lain diserang oleh elektrofil. elektrofilk biasanya ujung yang sedikit lebih positif (+) dari sebuah molekul seperti hidrogen bromida, HBr. Elektrofil tertarik dengan kuat ke elektron yang terekpose pada ikatan pi dan reaksi terjadi karena adanya reaksi inisiasi yang sebentar lagi akan kita bahas.  Anda mungkin bertanya mengapa Na+ tidak bereaksi dengan etena. Walaupun ion ini tertarik dengan baik oleh ikatan pi, tidak ada kemungkinan proses akan berlanjut antara natrium dan karbon, karena sodium membentuk ikatan ionik dimana karbon membentuk ikatan kovalen.


Reaksi Adisi
 Struktur karbon lebih stabil pada ikatan tunggal daripada pada ikatan rangkap. Ikatan pi sering terputus dan elektronnya dipakai untuk berikatan dengan atom lain. I Sebagai contoh, dengan menggunakan molekul yang umum X-Y.

Reaksi Adisi Elektrofilik
 Reaksi adisi merupakan reaksi dimana dua buah molekul bergabung menghasilkan molekul yang lebih besar. Tidak ada yang hilang selama proses berlangsung. Semua atom dari molekul awal dapat ditemukan pada molekul hasil penggabungan. Reaksi adisi elektrofilik merupakan reaksi adisi yang terjadi karena yang kita pikir sebagai molekul yang “penting” terserang oleh elektrofil. Molekul yang “penting” tersebut memiliki daerah dengan kepadatan elekton yang tinggi yang terserang oleh yang bermuatan positif.

Pada senyawa alkena terdapat elektron π yang letaknya lebih jauh dari inti dibanding elektron pada ikatan σ, sehingga lebih mudah diserang oleh suatu elektrofil. Elektron pi adalah suatu nukleofil lemah.
 Mekanisme reaksi adisi dari air terhadap etilen, suatu alkena sederhana
Tahapan Reaksi
Serangan elektrofil terhadap ikatan  π membentuk suatu  karbokation Serangan nukleofil terhadap  karbokation Tahap pertama berjalan lambat, dan merupakan tahap penentu laju
Bila alkena yang bereaksi adalah propena (alkena tak simetris karena substituen yang terikat pada karbon alkena tidak sama), maka ada dua kemungkinan produk yang terbentuk karena  gugus OH dapat masuk  pada  karbon  CH2 atau karbon CH3CH .
Kita dapat mengatakan bahwa produk yang terbentuk lebih cepat akan menjadi produk dominan dalam campuran. Dan kenyataannya kecepatan pembentukkan produk  satu  100 kali lebih cepat dibanding produk yang lain. Sehingga secara teknis praktis hanya satu produk yang dapat diamati. Dengan kata lain produk yang diramalkan adalah produk yang laju pembentukannya lebih cepat. Masalahnya adalah bila ada dua kemungkinan, kita harus bisa menentukan produk mana yang terjadi dengan laju lebih cepat . Hal ini tergantung energi aktivasi untuk mencapai keadaan teraktifkan . Reaksi dengan energi  keadaan transisi lebih rendah akan berlangsung lebih cepat dan menghasilkan produk lebih melimpah.
Karbokation sekunder lebih stabil (mempunyai tingkat energi lebih rendah)  dibanding carbocation primer . Gugus metil bersifat pendorong elektron yang membantu stabilisasi karbokation. 


Secara umum dapat dikatakan mekanisme reaksi adisi alkena  adalah serangan electrophile pada karbon yang kurang tersubstitusi pada tahap pertama  dan serangan nucleophile pada karbon yang lebih tersubstitusi pada tahap kedua.


Mekanisme ini dapat digunakan untuk memprediksi produk adisi terhadap alkena tak simetris dengan syarat dapat menentukan gugus elektrofil dan nukleofil dari molekul yang akan diadisikan pada alkena tersebut . Sebagai contoh adisi menggunakan HBr  . Ikatan dalam  HBr bersifat  polar dengan  H  positive dan Br  negative. H+ adalah  elektrofil dan Br- adalah  nukleofil.

Penerapan dari mekanisme umum diatas adalah :


Metode alternatif untuk membuat suatu alkohol primer  dikembangkan oleh H.C.Brown mengikuti rute di bawah:

Molekul Halogen misalnya  Cl2 dan Br2  juga dapat ditambahkan pada  ikatan rangkap alkena. Pada kasus ini tidak perlu mempertimbangkan  orientasi masuknya gugus karena gugus yang masuk identik  , tetapi aspek yang perlu dipahami adalah aspek stereokimia. Jika  bromine ditambahkan pada  cyclopentene,  ada dua kemungkinan produk yang dihasilkan tergantung   orientasi ruang  serangan kedua atom bromine. Bila dua atom menyerang dari arah yang sama  produk yang terjadi adalah  cis. Bila berlawanan produk yang terbentuk adalah  trans. Hasil eksperimen menunjukkan produk yang terbentuk hanya  trans .

Dari hasil pengamatan disimpulkan mekanisme yang terjadi adalah :

Tahap pertama
Tahap kedua
Sama dengan pada reaksi SN1 , serangan nukleofil terhadap  karbokation dapat terjadi dari dua arah sehingga dihasilkan   produk campuran cis dan trans.
Bila eksperimen hanya menghasilkan satu jenis produk, berarti dapat disimpulkan mekanisme reaksi tidak melalui pembentukan karbokation. Jadi harus ada mekanisme lain yang menyebabkan terhalangnya serangan nukleofilik dari arah yang sudah ada atom Br yang pertama. Ternyata pada tahap pertama atom Br menyerang kedua atom karbon alkena. Satu ikatan menggunakan elektron pi dari alkena, ikatan lain menggunakan elektron bebas Br. Hasilnya terbentuk  suatu siklik antara dua karbon alkena dan Br bentuk ini disebut ion brominium.
Serangan Br selanjutnya sama dengan pada reaksi  SN2. Arah serangan adalah berlawanan dengan posisi Br yang pertama. Dan produk akhir adalah trans .


Permasalahan :
1.  Mengapa serangan nukleofil terhadap  karbokation Tahap pertama berjalan lambat, dan   merupakan tahap penentu laju ?
2.      Mengapa reaksi dengan energi dalam  keadaan transisi lebih rendah, akan berlangsung lebih cepat sehingga menghasilkan produk lebih melimpah ?
3.   Mengapa karbokation sekunder lebih stabil (mempunyai tingkat energi lebih rendah)  dibanding 


Minggu, 11 Februari 2018

Presentasi Contoh Mekanisme Reaksi Substitusi Nukleofilik pada Alki Halida

 Reaksi SN2 adalah suatu jenis mekanisme reaksi substitusi nukleofilik dalam kimia organik. Dalam mekanisme ini, salah satu ikatan terputus dan satu ikatan lainnya terbentuk secara bersamaan, dengan kata lain, dalam satu tahapan reaksi. Karena dua spesi yang bereaksi terlibat dalam suatu tahapan yang lambat (tahap penentu laju reaksi), hal ini mengarah pada nama substitusi nukleofilik (bi-molekular) atau SN2, jenis mekanisme utama lainnya adalah SN1.
Mekanisme reaksi

Reaksi SN2 sering kali terjadi pada pusat karbon sp3 alifatik dengan suatu gugus pergi yang bersifat stabil dan elektronegatif, menempel padanya (terkadang ditulis X), yang biasanya adalah suatu atom halida. Pemutusan ikatan C–X dan pembentukan ikatan baru (terkadang ditulis C–Y atau C–Nu) terjadi secara simultan melalui suatu keadaan transisi di mana suatu karbon yang menjadi target serangan nukleofilik adalah pentakoordinat, dan kira-kira terhibridisasi sp2.


Penyerangan nukleofil pada karbon berlangsung 180° terhadap gugus pergi, karena hal tersebut menyediakan tumpang-tindih terbaik antara pasangan elektron sunyi pada nukleofil dan orbital anti-ikatan C–X σ*. Gugus pergi kemudian mendorong pada sisi berlawanan dan produk terbentuk melalui inversi pada geometri tetrahedral pada atom pusat.

Jika substrat yang menjadi target serangan nukleofilik besifat kiral, reaksi ini terkadang mengarah pada konfigurasi (stereokimia), yang disebut sebagai inversi Walden.

Sebagai contoh reaksi SN2, penyerangan Br− (nukleofil) pada suatu etil klorida (elektrofil) menghasilkan etil bromida, dengan klorida lepas sebagai gugus pergi:
Penyerangan pada SN2 dapat terjadi jika rute sisi belakang penyerangan tidak terdapat halangan sterik oleh substituen atau substrat. Karenanya, mekanisme ini biasanya terjadi pada suatu pusat karbon primer yang tak terhalang. Jika terdapat halangan sterik pada substrat dekat gugus pergi, seperti pada pusat karbon tersier, substitusi yang terjadi lebih disukai mengikuti mekanisme SN1 dibandingkan SN2, (SN1 dapat pula disukai bila zat antara karbokation yang stabil dapat terbentuk.

Reaksi SN1 adalah sebuah reaksi substitusi dalam kimia organik. SN1 adalah singkatan dari substitusi nukleofilik dan "1" memiliki arti bahwa tahap penentu laju reaksi ini adalah reaksi molekul tunggal. Reaksi ini melibatkan sebuah zat antara karbokation dan umumnya terjadi pada reaksi alkil halida sekunder ataupun tersier, atau dalam keadaan asam yang kuat, alkohol sekunder dan tersier. Dengan alkil halida primer, reaksi alternatif SN2 terjadi. Dalam kimia anorganik, SN1 dirujuk sebagai mekanisme disosiatif., seperti : H2O, CH3CH2OH

Mekanisme Reaksi SN1 

mekanisme reaksi SN1 hanya terjadi pada alkil halida tersier . Nukleofil yang dapat menyerang adalah nukleofil basa sangat lemah seperti : H2O, CH3CH2OH, Terdiri dari 3 tahap reaksi. Sebagai contoh adalah reaksi amtara t-butil bromida dengan air.



Kecepatan reaksi akan ditentukan oleh seberapa cepat halogenalkana terionisasi. Karena tahapan awal yang lambat ini hanya melibatkan satu spesies, maka mekanisme ini disebut sebagai SN1 – substitusi, nukleofilik, satu spesies yang terlibat dalam tahap awal yang lambat.

Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1: 
  • Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat
  • Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. 

permasalahan :
1. mengapa pada mekanisme reaksi Sn1 hanya terjadi pada alkil halida tersier?
2. mengapa penentu laju reaksi sn1 ditentukan oleh reaksi molekul tunggal?
3. tuliskan satu saja perbedaan mekanisme reaksi sn1 dan sn2!






Jumat, 02 Februari 2018

Mekanisme Reaksi Eliminasi Pada Alkohol dan Alkil Halida

A. Pengertian Reaksi Eliminasi

Reaksi eliminasi adalah suatu jenis reaksi organik dimana dua substituen dilepaskan dari sebuah molekul baik dalam satu atau dua langkah mekanisme. Reaksi satu langkah disebut dengan reaksi E2, sedangkan reaksi dua langkah disebut dengan reaksi E1. Simbol angka pada huruf E (yang berarti elimination) tidak melambangkan jumlah langkah. E2 dan E1 menyatakan kinetika reaksi yaitu berturut-turut bimolekuler dan unimolekuler.

Pada sebagian besar reaksi eliminasi organik, minimal satu hidrogen dilepaskan membentuk ikatan rangka dua. Dengan kata lain akan terbentuk molekul tak jenuh. Hal tersebut memungkinkan bahwa sebuah molekul melangsungkan reaksi eliminasi reduktif, dimana valensi atom pada molekul menurun dua. Jenis reaksi eliminasi yang penting melibatkan alkil halida, dengan gugus pergi (leavig group) yang baik, bereaksi dengan basa lewis membentuk alkena. Contoh reaksi eliminasi :
Reaksi eliminasi adalah kebalikan dari reaksi adisi. Ketika senyawa yang tereliminasi asimetris, maka regioselektivitas ditemukan oleh aturan Zaitsev.

B. Mekanisme Reaksi Eiminasi pada Alkil Halida

Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.
Pada reaksi substitusi, nukleofil menggantikan halogen . Pada reaksi eliminasi  halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan p) terbentuk di antara karbon-karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.

Seringkali reaksi substitusi dan eliminasi terjadi secara bersamaan pada pasangan pereaksi nukleofil dan substrat yang sama. Reaksi mana yang dominan, bergantung pada kekuatan nukleofil, struktur substrat, dan kondisi reaksi. Seperti halnya dengan reaksi substitusi, reaksi elimanasi juga mempunyai dua mekanisme, yaitu mekanisme E2 dan E1.

  • Mekanisme E2


Reaksi E2 adalah proses satu tahap. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi.Reaksi E2 secara khusus menggunakan basa kuat untuk menarik hidrogen asam dengan kuat. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.


Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan p baru.

  • Mekanisme E1


Mekanisme E1 mempunyai tahap awal yang sama dengan mekanisme SN1. Tahap lambat atau penentuan ialah tahap ionisasi dari substrat yang menghasilkan ion karbonium.


Kemudian, ada dua kemungkinan reaksi untuk ion karbonium. Ion bisa bergabung dengan nukleofil (proses SN1) atau atom karbon bersebelahan dengan ion karbonium melepaskan protonnya, sebagaimana ditunjukkan dengan panah lengkung, dan memebentuk alkena (proses E1).

C. Mekanisme Reaksi Eliminasi pada Alkohol

Reaksi eliminasi air dari alkohol/alkanol (dehidrasi)
Alkohol/alkanol dapat bereaksi membentuk alkena dengan bantuan katalis H2SO4 pekat berlebih.
Alkohol/alkanol berlebih dapat bereaksi membentuk eter dengan bantuan katalis H2SO4 pekat


Permasalahan :

1.      Sebutkan perbedaan dan perbandingan mekanisme eliminasi E1 dan E2?
2.    Mengapa mekanisme reaksi E2 secara khusus menggunakan basa kuat untuk menarik hydrogen asam?
3.      Jelaskan apa yang dimaksud dengan istilah “gugus pergi” dalam reaksi eliminasi alkil halida?












Presentasi Analisis Pembentukkan Struktur Sekunder Dan Tersier Pada Protein

Struktur Protein Protein berasal dari bahasa Yunani proteios yang berarti "barisan pertama". Kata yang diciptakan oleh Jons J....